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We present a theoretical analysis of stacking and destacking wave trains in excitable reaction-diffusion
systems with anomalous velocity-wavelength dependence. For linearized dispersion relations, kinematic analy-
sis yields an analytical function that rigorously describes front trajectories. The corresponding accelerations
have exactly one extremum that slowly decays with increasing pulse number. For subsequent pulses these
maxima occur with a lag time equal to the inverse slope of the linearized dispersion curve. These findings are
reproduced in experiments with chemical waves in the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction
but should be also applicable to step bunching on crystal surfaces and certain traffic phenomena.
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I. INTRODUCTION

Propagating excitation waves exist in a variety of spatially
extended, nonlinear systems[1]. Classic examples are trav-
eling action potentials in gastric[2], neuronal[3], and car-
diac tissue[4], intracellular Ca2+ waves inXenopus laevis
oocytes[5], and chemical waves in reaction-diffusion media.
The latter class of systems is extremely diverse and includes
various liquid-phase reactions[6], catalytic surfaces[7], ag-
gregating cell colonies[8], electrochemical systems[9],
yeast extracts[10], single cells[11], as well as the skin of
certain hairless mice that shows traveling stripes of different
color [12]. Waves in these systems are typically modeled by
coupled reaction-diffusion equations that describe the spa-
tiotemporal evolution of two or more chemical species[13].
Numerical integration of such models can yield quantitative
information on various features such as pulse velocities and
pulse profiles. In many cases, one finds that the pulse profiles
are constant with characteristic steep fronts and shallow
backs. This feature suggests an alternative description that
reduces the problem of analyzing the dynamics of the entire
wave pattern to a purely kinematic analysis of the corre-
sponding front curves[14].

In excitable systems with only one spatial dimension, the
latter approach represents each wave pulse as a simple, par-
ticlelike object. The state of the system is therefore fully
determined by the coordinates of the individual particles. To
analyze the dynamics of a given system, we need to have
knowledge of the rules that govern the repulsive and/or at-
tractive particle-particle interaction. In most experimental
reaction-diffusion systems, this interaction is described by
the underlying dispersion relation which quantifies the de-
pendence of pulse speed on interpulse distance[15]. The
dispersion curve reflects the response of the propagating
pulse to the refractory tail of its immediate predecessor. For
example, monotonic decay of an inhibitory species within
the refractory tail gradually increases the speed of the trailing
pulse as it is separated farther from its predecessor.

Most experimental systems follow the latter scenario and
obey normal dispersion relations for which the propagation
speed increases monotonically while converging to a finite
maximal value for large interpulse distances[16]. In recent
years, however, at least three reactions have been identified
that show anomalous behavior, namely, the catalytic reduc-
tion of NO with CO on a Pt(100) surface[17], the Belousov-
Zhabotinsky system dispersed in a water-in-oil microemul-
sion (BZ-AOT system) [18], and the 1,4-cyclohexanedione
Belousov-Zhabotinsky(CHD-BZ) reaction [19]. In these
systems, trailing pulses can be attracted by their leading
counterparts indicating that the underlying dispersion curve
has a negative slope over a large range of interpulse dis-
tances. For the CHD-BZ reaction, this anomalous dispersion
relation has been measured quantitatively[20], revealing
nonmonotonic dependencies similar to the solid curve in Fig.
1. Similar anomalous behavior can be found also in neuronal
systems[21], where it is referred to as “supernormal excit-
ability,” and possibly in aggregating populations of the
widely studied social amoebaDictyostelium discoideum[22].

Recent investigations of the CHD-BZ reaction show a va-
riety of interesting pulse dynamics[19,20,23]. Foremost, one
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FIG. 1. Schematic drawing of an anomalous dispersion relation
(solid curve). At the interpulse distancel0 the pulse speedC equals
the speedc0 of solitary fronts. The dashed line is the linear approxi-
mation of the dispersion curve at the pointl0.
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observes that pulses in finite wave trains stack in the wake of
their leading pulse at a characteristic interpulse distancel0.
This phenomenon is similar to a traffic jam in which fast
moving cars decelerate as they approach a slow moving ve-
hicle [24]. As illustrated in Fig. 1, the distancel0 is deter-
mined by the speedc0 of the slow frontier pulse and the
condition Csl0d=c0. The resulting stacked wave train is
stable against small perturbation if dCsl0d /dl.0. The dy-
namics of the deceleration process depends strongly on the
initial pulse distancel and the interpulse distancelmax for
which the anomalous dispersion curve reaches a maximum.
For l0,l,lmax, the deceleration occurs in a shocklike
fashion[25] and the “compression point” moves with a con-
stant velocity[26].

A typical example of this stacking dynamics in a quasi-
one-dimensional, ferroin-catalyzed CHD-BZ system, per-
formed in a capillary, is shown in Fig. 2. The plot in Fig. 2(a)
is generated by piling up consecutive absorbtion profiles of
the pseudo-one-dimensional reaction medium. In this repre-
sentation, each oxidation pulse generates a bright band
within the space-time plot while the reduced medium ap-
pears dark. The slope of these bands equals the inverse
propagation velocity. Figure 2(b) shows the space-time tra-
jectories of the first 23 pulses in Fig. 2(a) and clearly reveals
the slow moving compression point.

For l.lmax, the wave train undergoes cascades of
“bunching” events and forms clusters of closely spaced,
nearly stable pulses that are separated by large, and hence

less unstable, distances[27]. In the casel,l0, for which the
wave train is initially very dense, one finds a successive
destacking of the structure that quickly establishes the stable
stacked pattern of interpulse distancel0.

The dynamic phenomena of pulse stacking and bunching
can be reproduced by numerical simulations of the underly-
ing reaction-diffusion equations and have also been analyzed
in terms of the corresponding ordinary differential equations
that one obtains in co-moving coordinate systems. Here, we
present a rigorous kinematic analysis of pulse stacking and
destacking for linearized dispersion curves that yields ana-
lytical expressions for all pulse trajectories. Moreover, these
findings are compared to results obtained from experiments
with the CHD-BZ reaction.

II. EXPERIMENT

Our experiments employ the ferroin-catalyzed Belousov-
Zhabotinsky reaction using 1,4-cyclohexanedione as the or-
ganic substrate[28]. Aqueous stock solutions of 2.0 M so-
dium bromate (Fluka) and 0.5 M 1,4-cyclohexanedione
(Aldrich) are prepared in nanopure waters18 MV cmd ob-
tained from a Barnstead EASYpure UV unit. CHD solution
is filtered through a Whatman 0.2mm nylon filter. Ferroin
(25 mM, Fluka) and sulfuric acid(5 M, Riedel–de Haën) are
purchased as standardized solutions and used without further
purification.

FIG. 2. (a) Space-time plot obtained from absorption profiles of the experimental system.(b) Space-time trajectories of the first 23 pulse
fronts. The values forl0 and c0 of the stacked pulses are 0.525 mm and 0.097 mm/s, respectively. Initial concentrations:fH2SO4g
=2.0 M, fCHDg=0.2 M, fNaBrO3g=0.14 M, andfferroing=0.5 mM.
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All experiments are carried out in thin capillaries with an
inner diameter of 0.63 mm and a length of 64 mm(Drum-
mond 20mL MICROCAPS). Absorption profiles are moni-
tored with a monochrome charge-coupled-device camera
(COHU 2122; 6403480 pixel, 8 bit per pixel). The video
signal is digitized with a low-noise image-acquisition card
(Data Translation DT3155). Image data are acquired every
0.5 s as bitmap frames using commercial software
sHLImage+ +97d. For image analysis we use programs writ-
ten in IDL (Interactive Data Language, Research System
Inc., Versions 5.2). All experiments are performed at
s24±1d °C.

III. THEORETICAL ANALYSIS

As outlined in the Introduction, kinematic descriptions of
excitation waves focus on the dynamics of the individual
pulse fronts rather then the analysis of the entire wave pat-
tern. Such approaches have been employed successfully for
the description of rotating spiral waves and other stationary
and/or transient structures[29]. Our discussion is strictly
limited to the kinematic analysis of one-dimensional sys-
tems. In this case, the dynamics of a wave train is completely
described by the space-time trajectoriesxnstd of each of its
pulse fronts. We denote the leading pulse asn=0 and assume
that its velocityc0 is constant and positive. Without loss of
generality we further assume that its initial position is
x0s0d=0. Consequently, the leading pulse is described by
x0std=c0t. All subsequent pulses are labeled consecutively as
n=1,2, . . . andtheir positions at timet=0 are denoted assn.
Sincec0.0 andx0s0d=0, the latter values are negative and
obey the relationsn−1.sn.

For a given set of initial positions, the evolution of the
wave train only depends on the dispersion relationCsld and
can be calculated according to the equation

dxn

dt
= Csxn−1 − xnd s1d

that relates the velocity of thenth pulsesn.0d to the dis-
tancexn−1−xn from its predecessor.

The phenomena of wave stacking and destacking involve
interpulse distancesl that differ only slightly froml0. We
therefore linearize the given dispersion relation aroundl0
and obtain

Csld = c0 + nsl − l0d, s2d

wheren denotes the slope dc/dl of the dispersion curve at
l0. Using Eq.(2) and the initial conditions specified above,
one can solve Eq.(1) rigorously and obtains

xnstd = c0t − nl0 + e−nto
i=0

n−1
sntdi

i!
fsn − idl0 + sn−ig. s3d

Further analysis requires additional information regarding
the experimental conditions that determine the constantssn.
In the following, we consider the case in which at timet
=0 all pulses are equally spaced. Although similar, this case
should be distinguished from a situation in which pulses are

generated by a periodic pacemaker atx=0. The latter case is
more complicated because the pulse velocities at the pace-
maker are not constant for smalln, which yields cumber-
some, recursive expressions for the integration constantssn.
A brief discussion is presented in the Appendix.

If the pulses are equally spaced at timet=0, Eq. (3) can
be expressed in terms of analytical functions. Letl denote
the initial spacing between next-neighbor pulses. Withsn=
−nl sl.0d, we find that

xnstd = c0t − nl0 + sl − l0d
snt − ndGsn,ntd − sntdne−nt

Gsnd
,

s4d

where Gsnd and Gsn,ntd are the complete and the “upper”
incomplete gamma function, respectively. Two typical ex-
amples for the dynamics described by Eq.(4) are shown in
Fig. 3, where(a) and (b) correspond to pulse stackingsl
.l0d and destackingsl,l0d, respectively. For clarity, the
plots are not depicting the nearly linear trajectories forx
,0.

From Eq.(4), we obtain the velocityvn and the accelera-
tion an of the nth pulse as

vnstd = c0 + nsl − l0dQsn,ntd, s5d

anstd = − sl − l0d
nn+1tn−1e−nt

Gsnd
, s6d

where Qsn,ntd=Gsn,ntd /Gsnd is the regularized gamma
function. The acceleration of the first trailing pulsesn=1d
obeys a simple exponential function that rapidly converges to
zero as the distance from the frontier pulse approachesl0.
The acceleration of later pulsessn.1d, however, has a local
extremumAn at time tn. From Eq. (6) and dan/dt=0, we
obtain

tn =
n − 1

n
, s7d

An = − n2sl − l0d
sn − 1dn−1e1−n

Gsnd
. s8d

Figures 3(c) and 3(d) show examples for the resulting
temporal evolution of the pulse acceleration. The plots illus-
trate the simple,n dependent shift of extrema and decay of
amplitude described by Eqs.(7) and (8). Notice that, in the
framework of our analysis, stacking wave trains have strictly
nonpositive acceleration. However, in cases where the non-
linearity of the dispersion curve becomes relevant(cf., Fig.
1), this result does not hold and one expects pulses to accel-
erate prior to their insertion into the stacked pulse packet.

IV. EXPERIMENTAL RESULTS

Our theoretical findings are compared to experimental re-
sults obtained from chemical waves in the CHD-BZ reaction.
This system is similar to the classic Belousov-Zhabotinsky
reaction, but it employs 1,4-cyclohexanedione rather than
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malonic acid as its organic substrate. The CHD-BZ reaction
forms no gaseous reaction products that could nucleate un-
desired bubbles[30]. Therefore, it can be readily studied in
thin, open glass capillaries that approximate a one-
dimensional excitable medium. Under these conditions,
waves nucleate spontaneously at the ends of the capillary,
where bromine, an inhibitor of the reaction, diffuses from the
aqueous phase into the ambient atmosphere.

Figure 4 shows two representative space-time plots of
chemical waves in the ferroin-catalyzed CHD-BZ system. In
Fig. 4(a), two wave pulses are triggered at both ends of the
capillary tubes, whereas in Fig. 4(b) no waves are initiated at
the right end. The leading pulses are slower than the trailing
fronts, thus, indicating the presence of anomalous dispersion.
At t=0 s the interpulse distance in Fig. 4(a) sl=2.5 mmd is
approximately two times smaller than in Fig. 4(b) sl
=5.1 mmd.

A comparison of Figs. 4(a) and 4(b) reveals that the trail-
ing pulses show qualitatively different dynamics. In(a), we
observe a simple exponential approach during which the
pulse acceleration is strictly negative. Its trajectory, given by
Eq. (3), is in very good agreement with the theoretical de-
scription(see superimposed solid, black line on the left trail-
ing pulse). In (b), however, the trailing front accelerates dur-
ing its initial approach of the leading pulse. This behavior
results from an initial interpulse distance that is larger than
the distancelmax at which the underlying dispersion curve
reaches a maximal velocity(cf. Fig. 1). Accordingly, the
trailing pulse moves “over the hump” of the dispersion
curve, thus undergoing an initial acceleration, which causes
wave bunching for larger wave trains. We emphasize that the
latter behavior is not captured by our theoretical analysis that
relies on a linearized approximation of the normal branch of
the dispersion relation.

Using the experimental data in Fig. 2, we compute the
accelerationanstd for some of the early, stacking wave pulses
[see Fig. 5(a)]. For each pulse, we find exactly one pro-
nounced maximum of deceleration. The height of these
maxima decreases with increasing pulse numbern. The ex-
perimental results shown in Fig. 5(a) are in qualitative agree-
ment with our theoretical analysis that predicts a decrease in
the minimum ofanstd with increasing values ofn (cf. Fig. 3).
A quantitative comparison, however, shows that Eq.(6) un-
derestimates the experimental values.

Figure 5(b) shows the timetn at which the acceleration of
the nth pulse reaches its extremum. The data reveal a linear
dependence of peak time on pulse number as predicted by
Eq. (7) and shown in Fig. 3. Linear regression yields an
inverse slope of 0.042 s−1.

With this experimental value of the slope it is possible to
calculate the velocity of the shock point in Fig. 2 and to
compare our equations with the relationcs=sc0l1

−c1l0d / sl1−l0d. This equation is related to the Rankine-
Hugoniot relation[31] and was first used in the context of
reaction-diffusion systems to describe collision lines between
target patterns[25]. More recently, the applicability of this
equation to stacking waves was demonstrated experimentally
using the CHD-BZ reaction[26]. In this equationc0 andc1
denote the velocities of stacked and fast waves, respectively.
Their corresponding wavelengths are given byl0 and l1.
Using the experimental valuesc0=0.097 mm/s, c1
=0.127 mm/s,l0=0.525 mm, andl1=1.05 mm one obtains
a velocity of the shock front ofcs=0.069 mm/s. This is in
good agreement with the value 0.074 mm/s obtained from a
calculation using Eqs.(3) and(7) or Eqs.(4) and(7). A direct
evaluation of the shock front velocity from Fig. 2 yields a
value of 0.076 mm/s.

FIG. 3. Temporal evolution of
stacking (a), (c) and destacking
(b), (d) pulses. The plots show the
positions xstd and accelerations
astd for numerous consecutive
pulses as calculated from Eqs.(4)
and (6). The slope of the disper-
sion curven and the velocity of
the first pulsesc0 are 0.05 and 0.1,
respectively. The initial and the fi-
nal pulse distances arel=2.0 and
l0=0.5 (a), (c) and l=0.4 and
l0=1.5 (b), (d).
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A mild discrepancy between our experimental data and
Eq. (7) is discussed in the following. According to Eq.(7),
we expect the intercept of the regression linest=−60 sd to
approximate the initiation time of the first pulsesn=0d. Be-
cause early initiation events are not captured in the measure-
ment, we approximate the initiation time by linear extrapo-
lation of the leading pulse trajectory in Fig. 2. This analysis
suggests initiation at −91 s. The latter value is surprisingly
smaller than thet intercept of −60 s in Fig. 5(b). We at-
tribute this difference to increased front velocities in close
vicinity of the pacemaker.

Next, we compare the inverse slope of the data in Fig.
5(b) with the dispersion relation of the system. Figure 6
shows the normal branch of the dispersion relation as ob-
tained from a stacking pulse in Fig. 2. In this experiment the
linearized slope aroundl0 is 0.36 s−1 (dashed line). Linear
regression of the entire curve yields 0.049 s−1 (solid line).

The latter value is in good agreement with the inverse slope
s0.042 s−1d of the data in Fig. 5(b). Hence the main features
of our theoretical analysis[cf. Eq. (7)] are recovered, but the
underlyingn value is approximately the average slope of the
dispersion curve over the relevant pulse distance interval.

V. CONCLUSIONS

In conclusion, we have presented a kinematic analysis of
stacking and destacking waves in excitable reaction-diffusion
systems with anomalous dispersion. Our analysis is based on
the linear approximation of the nonmonotonic dispersion re-
lation around the stacking distancel0. It yields a rigorous
expression[Eq. (3)] for pulse trajectories in arbitrary wave
trains for which the initial front positions are known. The
applicability of the latter expression to experimental data is
successfully demonstrated for chemical waves in the
CHD-BZ reaction even if the normal branch of the real dis-

FIG. 4. Space-time plots of consecutive waves with initial
wavelengthsli on either side of the maximum of the dispersion
relation (cf. lmax in Fig. 1). (a) Two wave pairs propagating in
opposite direction withli =2.5 mm sdC/dl.0d and an annihila-
tion process att<100 s. The dotted line indicates the linear behav-
ior of the first front. The solid line indicates the trajectory obtained
from Eq.(4). (b) With li =5.1 mm the wave starts at the anomalous
branchsdC/dl,0d of the dispersion curve. Initial concentrations
are the same as in Fig. 2 exceptfNaBrO3g=0.15 M.

FIG. 5. (a) Deceleration −an as a function of time for several
consecutive pulses. The small numbers below and above the peaks
denote the pulse numbersn. (b) Corresponding peak timestn as a
function of the pulse numbersn−1d (open circles). The solid line is
the best linear fit. Its inverse slope is 0.042 s−1.
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persion relation differs from the linearized assumption.
For wave trains in which the front positions are equally

spaced att=0, we obtain analytical functions that describe
the front velocities and accelerations as a function of time. In
particular, kinematic analysis predicts a unique deceleration
maximum for each pulse withn.1. For subsequent pulse
pairs these maxima occur with a lag time equal to the inverse
slope 1/n of the linearized dispersion curve. This simple
dependence is reproduced in our experiments.

Last, we emphasize that the results of this study are not
limited to the description of excitation waves in chemical
and biological reaction-diffusion media. Our results should
be also useful for the description of step defects on crystal
surfaces and the related analysis of step bunching which con-
stitutes a severe and interesting problem in the field of crys-
tal growth[32]. Moreover, we believe that our findings pro-
vide insights into the emergence of traffic jams where
individual vehicles interact according to rules that are similar
to those dictated by anomalous dispersion relations.
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APPENDIX

In the following, we provide a theoretical description of
pulses triggered by a resting, pointlike pacemaker of constant
periodT. Without loss of generality we assume that the pace-
maker is located atx=0 and that the frontier pulsesn=0d is
triggered at timet=0. These assumptions imply thatxnsnTd

=0 and allow us to determine the integration constantssn in
Eq. (3) from the recursion equation

s1 = enT, sA1d

sn = nennT − o
i=1

n−1
snnTdi

i!
sn−i , sA2d

and

sn = snc0sT0 − Td − nc0T0, sA3d

whereT0=l0/c0 denotes the period in stacked pulse trains.
Recursive Taylor expansion of Eq.(A2) aroundn=0 sug-

gests thatsn can be approximated by a geometric series
yielding

sn <
n

1− nT
. sA4d

We find that the latter equation yields very good agree-
ment with Eq.(A2), if nT!1. For larger values ofnT, how-
ever, the approximation in Eq.(A4) fails and overestimates
sn for small n. Figure 7 illustrates this finding for values of
nT between 0.2 and 0.8.

Using the approximation given in Eq.(A4), we obtain a
simple expression for the integration constantssn. Substitu-
tion of the latter expression into Eq.(3) yields the position
and, consequently, the velocity and the acceleration of the
nth pulse as a function of time. The resulting equations are
identical to those in Eqs.(4)–(6) and (8) if the term sl
−l0d is replaced byc0sT0−Td / s1−nTd. Furthermore, we
fully recover Eq.(7) that described the time at which the
acceleration reaches an extremum.

FIG. 6. The normal branch of the dispersion relation as deter-
mined from a stacking front in Fig. 2. The solid line represents the
best linear fit using all data(slope of 0.049 s−1). The dashed line
(slope of 0.36 s−1) is the linear approximation of theCsld values
aroundl0.

FIG. 7. Evaluation of the usefulness of Eq.(A4) for the analysis
of pulses generated by a periodic pacemaker. The discrete values
obtained from Eqs.(A1) and (A2) and the continuous approxima-
tion in Eq. (A4) are represented by symbols and lines, respectively.
The symbol-curve pairs(a–d) correspond to calculations carried out
for nT=0.2 (open circles, dash-dot line), 0.4 (crosses, dotted line),
0.6 (solid circles, dashed line), and 0.8(solid diamonds, solid line).
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