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Dynamics of excitation pulses with attractive interaction: Kinematic analysis
and chemical wave experiments
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We present a theoretical analysis of stacking and destacking wave trains in excitable reaction-diffusion
systems with anomalous velocity-wavelength dependence. For linearized dispersion relations, kinematic analy-
sis yields an analytical function that rigorously describes front trajectories. The corresponding accelerations
have exactly one extremum that slowly decays with increasing pulse number. For subsequent pulses these
maxima occur with a lag time equal to the inverse slope of the linearized dispersion curve. These findings are
reproduced in experiments with chemical waves in the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction
but should be also applicable to step bunching on crystal surfaces and certain traffic phenomena.
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I. INTRODUCTION Most experimental systems follow the latter scenario and

Propagating excitation waves exist in a variety of spatiallyObey normal dispersion relations for which the propagation

extended, nonlinear systerfi]. Classic examples are trav- Smp:jg];Tf/rsﬁseeforn}groéﬂg'é?lIﬁl\s'\éhl(lj?sg %rg/g?'?r? rtgcgnftlnlte
eling action potentials in gastri@], neuronal[3], and car- g P '

diac tissue[4], intracellular C&" waves inXenopus laevis %/r?;rss,hzevwa?rzlgrrﬁ;gljesaztethhar\?i%rrer?grt#)erlls ?ﬁgecgteaﬂiédfgéﬁf_d
oocytes[5], and chemical waves in reaction-diffusion media.tion of NO with CO on a R1.00) éurface[)1/,7] the Belgusov-

The latter class of systems is extremely diverse and inCIUdefhabotinsk system dispersed in a Wate;-in-oil microemul-
various liquid-phase reactiori§], catalytic surface§7], ag- sion (BZ—A(%T); stem [18], and the 1,4-cyclohexanedione
gregating cell colonie(8], electrochemical systemgd], Belousov—Zhabgtinsky(CHb—BZ) react’ion)E19] In these
yeast extract§10], single cells[11], as well as the skin of ystems, trailing pulses can be attracted b)./ their leading

certain hairless mice that shows traveling stripes of d'ﬁerengounterparts indicating that the underlying dispersion curve

color [12]. Waves in these systems are typically modeled byhas a negative slope over a large range of interpulse dis-

coupled reaction-diffusion equations that describe the spg- . . . X
tiotemporal evolution of two or more chemical spedi&s]. atances. For the CHD-BZ reaction, this anomalous dispersion

Numerical integration of such models can yield quantitativere“”Itlon has_ been measgred _qgantltatlv{azji)],_ reveahng .
onmonotonic dependencies similar to the solid curve in Fig.

information on various features such as pulse velocities an o ) ;
. Similar anomalous behavior can be found also in neuronal

pulse profiles. In many cases, one finds that the pulse profiless stemg21], where it is referred to as “supernormal excit-
are constant with characteristic steep fronts and shallowyiIit " an d’ ossiblv in agareaatin opulations of the
backs. This feature suggests an alternative description thgp Y, P y ggregating pop

reduces the problem of analyzing the dynamics of the entir 'ds(le):::tnlﬁ'niiggcz::nrgooi%gtécﬁg Illguzm rg;i%giﬁfﬁ]é va-
wave pattern to a purely kinematic analysis of the corre- 9

sponding front curvegl4]. riety of interesting pulse dynami¢$9,20,23. Foremost, one

In excitable systems with only one spatial dimension, the
latter approach represents each wave pulse as a simple, par-
ticlelike object. The state of the system is therefore fully
determined by the coordinates of the individual particles. To
analyze the dynamics of a given system, we need to have
knowledge of the rules that govern the repulsive and/or at-
tractive particle-particle interaction. In most experimental
reaction-diffusion systems, this interaction is described by
the underlying dispersion relation which quantifies the de-
pendence of pulse speed on interpulse distgi& The
dispersion curve reflects the response of the propagating
pulse to the refractory tail of its immediate predecessor. For
example, monotonic decay of an inhibitory species within o 4
the refractory tail gradually increases the speed of the trailing
pulse as it is separated farther from its predecessor.
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FIG. 1. Schematic drawing of an anomalous dispersion relation
(solid curve. At the interpulse distance, the pulse spee@ equals
the speed; of solitary fronts. The dashed line is the linear approxi-
*Electronic address: steinbck@chem.fsu.edu mation of the dispersion curve at the poiy

1539-3755/2004/16)/0662137)/$22.50 066213-1 ©2004 The American Physical Society



N. MANZ AND O. STEINBOCK PHYSICAL REVIEW E70, 066213(2004)

400 400

350 350

300 300 -
250 250 i
) —~
—~ 2
o 200 - 200 .
£ o
= E
150 150 |
100 100 .
50 50 b
0 0 1 1 !
0 10 20 30 40 0 10 20 30 40
(a) space x (mm) (b) space x (mm)

FIG. 2. (a) Space-time plot obtained from absorption profiles of the experimental sydig®pace-time trajectories of the first 23 pulse
fronts. The values foi\y and ¢y of the stacked pulses are 0.525 mm and 0.097 mm/s, respectively. Initial concentrfitigB&,]
=2.0 M, [CHD]=0.2 M, [NaBrO;]=0.14 M, and[ferroin]=0.5 mM.

observes that pulses in finite wave trains stack in the wake déss unstable, distancf7]. In the case. <\, for which the
their leading pulse at a characteristic interpulse distagce wave train is initially very dense, one finds a successive
This phenomenon is similar to a traffic jam in which fast destacking of the structure that quickly establishes the stable
moving cars decelerate as they approach a slow moving vestacked pattern of interpulse distangg
hicle [24]. As illustrated in Fig. 1, the distance, is deter- The dynamic phenomena of pulse stacking and bunching
mined by the speed, of the slow frontier pulse and the can be reproduced by numerical simulations of the underly-
condition C(Ag)=Co. The resulting stacked wave train is ing reaction-diffusion equations and have also been analyzed
stable against small perturbation i€tho)/d\>0. The dy- in terms of the corresponding ordinary differential equations
namics of the deceleration process depends strongly on thteat one obtains in co-moving coordinate systems. Here, we
initial pulse distancex and the interpulse distaneg,,, for  present a rigorous kinematic analysis of pulse stacking and
which the anomalous dispersion curve reaches a maximunaestacking for linearized dispersion curves that yields ana-
For N\g<A<Amax the deceleration occurs in a shocklike lytical expressions for all pulse trajectories. Moreover, these
fashion[25] and the “compression point” moves with a con- findings are compared to results obtained from experiments
stant velocity[26]. with the CHD-BZ reaction.

A typical example of this stacking dynamics in a quasi-
one-dimensional, ferroin-catalyzed CHD-BZ system, per-
formed in a capillary, is shown in Fig. 2. The plot in Figa [l. EXPERIMENT
is generated by piling up consecutive absorbtion profiles of
the pseudo-one-dimensional reaction medium. In this repre- Our experiments employ the ferroin-catalyzed Belousov-
sentation, each oxidation pulse generates a bright bandhabotinsky reaction using 1,4-cyclohexanedione as the or-
within the space-time plot while the reduced medium ap-ganic substrat¢28]. Aqueous stock solutions of 2.0 M so-
pears dark. The slope of these bands equals the inversbum bromate (Fluka) and 0.5 M 1,4-cyclohexanedione
propagation velocity. Figure(B) shows the space-time tra- (Aldrich) are prepared in nanopure waté8 M( cm) ob-
jectories of the first 23 pulses in Fig(@ and clearly reveals tained from a Barnstead EASYpure UV unit. CHD solution
the slow moving compression point. is filtered through a Whatman 0/2m nylon filter. Ferroin

For A>\phae the wave train undergoes cascades of(25 mM, Flukg and sulfuric acid5 M, Riedel-de Haénare
“bunching” events and forms clusters of closely spacedpurchased as standardized solutions and used without further
nearly stable pulses that are separated by large, and henperification.
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All experiments are carried out in thin capillaries with an generated by a periodic pacemakexaD. The latter case is
inner diameter of 0.63 mm and a length of 64 niBrum-  more complicated because the pulse velocities at the pace-
mond 20uL MICROCAPS). Absorption profiles are moni- maker are not constant for smaid] which yields cumber-
tored with a monochrome charge-coupled-device cameraome, recursive expressions for the integration constgnts
(COHU 2122; 640<480 pixel, 8 bit per pixel The video A brief discussion is presented in the Appendix.
signal is digitized with a low-noise image-acquisition card If the pulses are equally spaced at titwe0, Eq.(3) can
(Data Translation DT3155 Image data are acquired every be expressed in terms of analytical functions. hedenote
0.5s as bhitmap frames using commercial softwarehe initial spacing between next-neighbor pulses. Véjth
(HLImage+ +97. For image analysis we use programs writ- —n\ (A >0), we find that
ten in IDL (Interactive Data Language, Research System -
Inc., Versions 5.2 All experiments are performed at  y (t)=cit—nng+ (A -\ )(Vt_”)r(”"’t)_(”t) €

n 0 0 0 '
(24+1) °C. I'(n)

(4)

Ill. THEORETICAL ANALYSIS whereI'(n) and I'(n, »t) are the complete and the “upper”
As outlined in the Introduction, kinematic descriptions of incomplete gamma fu_nct|on, rt_aspectlvely. Two typlcall ex-
o . S amples for the dynamics described by E4) are shown in

excitation waves focus on the dynamics of the individual_. X

. . Fig. 3, where(a) and (b) correspond to pulse stackin@
pulse fronts rather then the analysis of the entire wave pat->)\ ) and destacking <o) tivelv. F larity. th
tern. Such approaches have been employed successfully fo[ o) an es:c _mg_j hO ' resp:ecl_lve y- For cartty, % €
the description of rotating spiral waves and other stationary?'0tS aré not depicting the nearly linear trajectories or
and/or transient structurg®9]. Our discussion is strictly
limited to the kinematic analysis of one-dimensional sys

tems. In this case, the dynamics of a wave train is completel

_ From Eq.(4), we obtain the velocity, and the accelera-
yon a, of thenth pulse as

described by the space-time trajecton'«gét) of each of its () = Co+ v\ = \)Q(N, 1), (5)
pulse fronts. We denote the leading pulsena® and assume

that its velocityc, is constant and positive. Without loss of L1t

generality we further assume that its initial position is a,(t)==(\=X\p) (6)

X9(0)=0. Consequently, the leading pulse is described by I'(n)
Xo(t) =cot. All subsequent pulses are labeled consecutively agshere Q(n, vt)=I'(n,2t)/T'(n) is the regularized gamma
n=1,2,... andheir positions at time¢=0 are denoted a%.  function. The acceleration of the first trailing pul&e=1)
Sincecy>0 andx(0)=0, the latter values are negative and gheys a simple exponential function that rapidly converges to
obey the relatiors,_;>s;. zero as the distance from the frontier pulse approashes
For a given set of initial positions, the evolution of the The acceleration of later pulsés> 1), however, has a local
wave train only depends on the dispersion relatjin) and extremumA,, at time 7. From Eq.(6) and d,/dt=0, we

can be calculated according to the equation obtain
dx n-1
d_n =C(Xnp-1=Xn) 1) = , (7)
t 14
that relates the velocity of theth pulse(n>0) to the dis- e
tancex,_,—Xx, from its predecessor. A== 200 -\ )(n -1)"e ®
The phenomena of wave stacking and destacking involve 0 I'(n)

interpulse distances that differ only slightly fromx,. We
therefore linearize the given dispersion relation arowgd
and obtain

Figures 8c) and 3d) show examples for the resulting
temporal evolution of the pulse acceleration. The plots illus-
trate the simplen dependent shift of extrema and decay of
C(\) =co+ v(N = \), 2) amplitude described by Eqé7) and (8). Notice that, in the

framework of our analysis, stacking wave trains have strictly

nonpositive acceleration. However, in cases where the non-
' linearity of the dispersion curve becomes relevarft, Fig.

1), this result does not hold and one expects pulses to accel-

erate prior to their insertion into the stacked pulse packet.

where v denotes the slopecdd\ of the dispersion curve at
N\o- Using Eq.(2) and the initial conditions specified above
one can solve EqJ) rigorously and obtains

n-1 i
Xq(t) = Cot =g + €712 (1;_'t)[(n —Dhot+s]l. (3
i=0 -
. . . . . . IV. EXPERIMENTAL RESULTS
Further analysis requires additional information regarding
the experimental conditions that determine the constgpts Our theoretical findings are compared to experimental re-
In the following, we consider the case in which at timme sults obtained from chemical waves in the CHD-BZ reaction.
=0 all pulses are equally spaced. Although similar, this cas@his system is similar to the classic Belousov-Zhabotinsky
should be distinguished from a situation in which pulses areeaction, but it employs 1,4-cyclohexanedione rather than
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malonic acid as its organic substrate. The CHD-BZ reaction Using the experimental data in Fig. 2, we compute the
forms no gaseous reaction products that could nucleate umcceleratiora,(t) for some of the early, stacking wave pulses
desired bubble$30]. Therefore, it can be readily studied in [see Fig. Ba)]. For each pulse, we find exactly one pro-
thin, open glass capillaries that approximate a onenounced maximum of deceleration. The height of these
dimensional excitable medium. Under these conditionsmaxima decreases with increasing pulse nunthérhe ex-
waves nucleate spontaneously at the ends of the capillargerimental results shown in Fig(d are in qualitative agree-
where bromine, an inhibitor of the reaction, diffuses from thement with our theoretical analysis that predicts a decrease in
aqueous phase into the ambient atmosphere. the minimum ofa,(t) with increasing values af (cf. Fig. 3).
Figure 4 shows two representative space-time plots oA quantitative comparison, however, shows that &y.un-
chemical waves in the ferroin-catalyzed CHD-BZ system. Inderestimates the experimental values.
Fig. 4(a), two wave pulses are triggered at both ends of the  Figure §b) shows the timer, at which the acceleration of
capillary tubes, whereas in Fig() no waves are initiated at the nth pulse reaches its extremum. The data reveal a linear
the right end. The leading pulses are slower than the trailingienendence of peak time on pulse number as predicted by

fronts, thus, indicating the presence of anomalous dispersiorp_;q_ (7) and shown in Fig. 3. Linear regression yields an
At t=0 s the interpulse distance in Figa#(A\=2.5mm is v erse slope of 0.042°%

approximately two times smaller than in Fig(b# (A With this experimental value of the slope it is possible to

=5.1 mm. ) i . calculate the velocity of the shock point in Fig. 2 and to
A comparison of Figs. @) and 4b) reveals that the trail- compare our equations with the relatiom,=(coh;

ing pulses show qualitatively different dynamics. (b, we —cho)/(A\;—\o). This equation is related to the Rankine-
observe a simple exponential approach during which th ugoniot relation[31] and was first used in the context of

pulse acceleration is strictly negative. Its trajectory, given b : o . TR
Eq. (3), is in very good agreement with the theoretical de_reacnon—dlffusmn systems to describe collision lines between

scription(see superimposed solid, black line on the left trail-2rget patterng25]. More recently, the applicability of this
ing pulse. In (b), however, the trailing front accelerates dur- €3uation to stacking waves was demonstrated experimentally
ing its initial approach of the leading pulse. This behaviorusing the CHD-BZ reactiofi26]. In this equationc, andc,
results from an initial interpulse distance that is larger tharflenote the velocities of stacked and fast waves, respectively.
the distance\ ., at which the underlying dispersion curve Their corresponding wavelengths are given tiyand A;.
reaches a maximal velocitycf. Fig. 1). Accordingly, the Using the experimental valuescy=0.097 mm/s, ¢;
trailing pulse moves “over the hump” of the dispersion=0.127 mm/shy=0.525 mm, andc;=1.05 mm one obtains
curve, thus undergoing an initial acceleration, which causea velocity of the shock front 0£s=0.069 mm/s. This is in
wave bunching for larger wave trains. We emphasize that thgood agreement with the value 0.074 mm/s obtained from a
latter behavior is not captured by our theoretical analysis thatalculation using Eqg3) and(7) or Egs.(4) and(7). A direct
relies on a linearized approximation of the normal branch ofvaluation of the shock front velocity from Fig. 2 yields a
the dispersion relation. value of 0.076 mm/s.
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FIG. 4. Space-time plots of consecutive waves with initial 0 5 10 15 20
wavelengthsk; on either side of the maximum of the dispersion () pulse number (n-1)

relation (cf. Npyay in Fig. 1). () Two wave pairs propagating in
opposite direction witt\;=2.5 mm (dC/d\>0) and an annihila-
tion process at= 100 s. The dotted line indicates the linear behav-
ior of the first front. The solid line indicates the trajectory obtained
from Eq.(4). (b) With \;=5.1 mm the wave starts at the anomalous
branch(dC/d\ <0) of the dispersion curve. Initial concentrations
are the same as in Fig. 2 excéptaBrO;]=0.15 M.

FIG. 5. (a) Deceleration &, as a function of time for several
consecutive pulses. The small numbers below and above the peaks
denote the pulse numbens (b) Corresponding peak times, as a
function of the pulse numbén-1) (open circles The solid line is
the best linear fit. Its inverse slope is 0.042.s

The latter value is in good agreement with the inverse slope

A mild discrepancy between our experimental data and0.042 s?) of the data in Fig. &). Hence the main features
Eq. (7) is discussed in the following. According to E), of our theoretical analysigf. Eq.(7)] are recovered, but the
we expect the intercept of the regression lire-60 9 to  underlyingv value is approximately the average slope of the
approximate the initiation time of the first pulée=0). Be-  dispersion curve over the relevant pulse distance interval.
cause early initiation events are not captured in the measure-
ment, we approximate the initiation time by linear extrapo-
lation of the leading pulse trajectory in Fig. 2. This analysis
suggests initiation at =91 s. The latter value is surprisingly In conclusion, we have presented a kinematic analysis of
smaller than ther intercept of —60 s in Fig. ®). We at-  stacking and destacking waves in excitable reaction-diffusion
tribute this difference to increased front velocities in closesystems with anomalous dispersion. Our analysis is based on
vicinity of the pacemaker. the linear approximation of the nonmonotonic dispersion re-

Next, we compare the inverse slope of the data in Figlation around the stacking distanag. It yields a rigorous
5(b) with the dispersion relation of the system. Figure 6expressionEg. (3)] for pulse trajectories in arbitrary wave
shows the normal branch of the dispersion relation as obtrains for which the initial front positions are known. The
tained from a stacking pulse in Fig. 2. In this experiment theapplicability of the latter expression to experimental data is
linearized slope aroundl, is 0.36 s* (dashed ling Linear  successfully demonstrated for chemical waves in the
regression of the entire curve yields 0.049 gsolid line). CHD-BZ reaction even if the normal branch of the real dis-

V. CONCLUSIONS
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FIG. 6. The normal branch of the dispersion relation as deter®f Pulses generated by a periodic pacemaker. The discrete values
mined from a stacking front in Fig. 2. The solid line represents the®Ptained from Eqs(Al) and (A2) and the continuous approxima-
best linear fit using all datéslope of 0.049 ). The dashed line tion in Eq.(A4) are represented by symbols and lines, respectively.

(slope of 0.36 &) is the linear approximation of th€(\) values The symbol-curve pair@—d correspond to calculations carried out
aroundhg. for vT=0.2 (open circles, dash-dot line0.4 (crosses, dotted ling

0.6 (solid circles, dashed lineand 0.8(solid diamonds, solid line

persion relation differs from the linearized assumption.

For wave trains in which the front positions are equally
spaced at=0, we obtain analytical functions that describe
the front velocities and accelerations as a function of time. In T
particular, kinematic analysis predicts a unique deceleration T1=€"
maximum for each pulse with>1. For subsequent pulse
pairs these maxima occur with a lag time equal to the inverse nl (nvT)
slope 1k of the linearized dispersion curve. This simple Un:nenﬂ—z o On-in (A2)
dependence is reproduced in our experiments. =

Last, we emphasize that the results of this study are not g
limited to the description of excitation waves in chemical
and biological reaction-diffusion media. Our results should 8= 0Co(To=T) = NG Ty, (A3)
be also useful for the description of step defects on crystal
surfaces and the related analysis of step bunching which convhere To=\y/c, denotes the period in stacked pulse trains.
stitutes a severe and interesting problem in the field of crys- Recursive Taylor expansion of EGA2) aroundn=0 sug-
tal growth[32]. Moreover, we believe that our findings pro- gests thato,, can be approximated by a geometric series
vide insights into the emergence of traffic jams whereyielding
individual vehicles interact according to rules that are similar
to those dictated by anomalous dispersion relations. n

T

=0 and allow us to determine the integration constapis
Eq. (3) from the recursion equation

(A1)

(A4)
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In the following, we provide a theoretical description of nth pulse as a function of time. The resulting equations are
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periodT. Without loss of generality we assume that the pace—X\y) is replaced bycy(To—T)/(1-»T). Furthermore, we
maker is located at=0 and that the frontier pulsen=0) is  fully recover Eq.(7) that described the time at which the
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APPENDIX
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